

Enhancing Resilience in Agricultural Production Systems with Technology Development

Global Summit of Women- Luncheon session "FOOD SECURITY AND TECHNOLOGY

Dr. Kathrin Grahmann

Prediction of highest global impact scenario in **2050** applying RCP6.0 SSP3

Numbers of people and share of analysed population in GRFC countries/territories facing high levels of acute food insecurity, 2016–2024

International Food Policy Research Institute: 2025 Global Report on Food Crises

Most pressing challenges facing agriculture

Source: Campbell et al. 2017, photo: tulumtimes, oysterheaven

Threats for and through agriculture

Planetary boundaries

Soil degradation

Healthy soils as a Game-Changer

Source: FAO/ A Soil Deal for Europe

Source: https://www.sciencedirect.com/science/article/pii/S2214662824001026

Role of technologies in agriculture

Photos: Leah Penniman; kernza.org

Crop rotation & diversification

Crop pasture rotation

Soil fertility Water use efficiency

Yield stability

Pest & disease resistance

Crop rotation & diversification

Crop pasture rotation

Milpa

Legume-based intercropping

Soil structure

Income diversification

Risk reduction

Soil fertility

Water use efficiency

Yield stability

Pest & disease resistance

Or et al., 2021: Natural and managed soil structure: On the fragile scaffolding for soil functioning

Conservation agriculture

Comprises three basic components

- > Surface crop residue retention
- > Minimal soil movement
- > Economical viable crop rotations

Soil moisture retention

Soil biological activity

Fuel savings

Erosion protection

Photos: W. Niether and S. Jacobs; 10.1016/j.agrformet.2022.109065

Agroforestry

(a) hedgerow for wind protection, (b) meadow orchard, (c) silvopastoral system with grazing sheep, (d) short rotation alley cropping system (e) recently established silvoarable alley cropping system

Erosion control

Water retention

Biodiversity enhancement

Wind speed

Income diversification

Precision farming

Precision machinery

Yield maps

GPS path planning

Time savings

Pest & disease management

Resource use efficiency

Soil compaction

Profitability

Environmental impact

Agri-photovoltaics

Single-axis tracker

Vertical Agri-PV

Agri-PV with high elevation

Microclimate benefits

Biodiversity

Hail protection

Dual/ Triple purpose

Marginal land use

Wind erosion

Photos: Wegener et al. (2019, Ditzler& Driessen (2022), Stockcake, trilliummutual

Precision agriculture & technologies to manage diversified fields

Field sizes decrease

Crop diversification increases

Complexity unmanageable

Spot farming

Pixel cropping

Increasing number of relevant tasks, decisions & data

Agricultural robotics

Mechanical weeding

Planting

Spot spraying

Harvest

Renewable energy use

Pesticide reduction

Labor-saving automation

Soil compaction

Source: Dörr et al. 2019

Market evolution for autonomous field robots

Market share of automation type in **2045**, estimation based on expert interviews/workshops

Year 2045	Entirely human driven (no tech- nological assis- tance)	Assisted human driven (with technological assistance, e.g. GPS)	Supervised au- tonomous ma- chines	Entirely autono- mous machines
High-technology, large- scale markets (North America & Australia)	•	•		
Western European markets	•	•		
Small-scale Asian mar- kets				
Low-technology, large- scale markets (Latin America)	•			
Eastern European mar- ket	•			
African & Middle Eastern Markets			•	•

Legend				•
Market share	> 80 %	50 – 80 %	10 – 50 %	< 10 %

The future we can build

- Nature-based + digital = tool to cope with climate change
- Tech exists but adoption is key and highly lacking
- Bioeconomy perspective links food, energy, biodiversity, and soil health
- Requirements: Change must happen with farmers, not just for them
 - Living lab approach (take it to the farmer, innovator hubs, co-creation of knowledge)

Thanks a lot for your attention!

Contact: Kathrin.Grahmann@zalf.de 18